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Abstract: Absorption spectra of substituted carotenoids with varying acceptor strength are analyzed using collective
electronic normal modes obtained using the time-dependent Hartree-Fock (TDHF) technique combined with the
INDO/S semiempirical Hamiltonian. Two-dimensional plots of the collective excitations in real space show an
off-diagonal sizeassociated with relative motion of electron-hole pairs created upon optical excitation and adiagonal
sizerepresenting the pair’s center of mass motion. By varying the polyene chain length we show that the response
of symmetric molecules is controlled by “bulk” delocalized excitations with coherence size∼12 double bonds, whereas
the response of short polar molecules is dominated by a localized “charge-transfer” excitation created at the acceptor
end with coherence and diagonal lengths∼12 and∼17 double bonds, respectively.

I. Introduction

Substituted conjugated molecules have interesting optical
properties which reflect the interplay of the donor-acceptor
strength and the type and length of the connecting bridge.1-5

The charge-transfer, energy-transfer, and isomerization of such
systems have been thoroughly investigated and form the basis
for our understanding of the photophysics and photochemistry
of complex molecules.6-8 Many photophysical and photo-
chemical biological processes involve conjugated chromophores
such as porphyrins and chlorophylls. The nonlinear optical
properties of these systems have also been studied in search
for new organic optical materials with large nonlinear
polarizabilities.4,5,9-14

In this article we calculate and analyze the electronic spectra
of a family of acceptor substituted carotenoids11 using the
recently developed collective electronic oscillator (CEO)
approach.15-18 The carotenoids form one of the most important
groups of natural pigments and are found in all families of

vegetables and animal kingdoms.19,20 In photosynthetic cells
these molecules appear in antenna complexes that absorb the
light and transfer excitation to the reaction centers.21,22 In
addition they serve as antioxidants by quenching the chlorophyll
triplet via energy transfer and preventing the formation of singlet
oxygen. The photoisomerization of the closely related retinoids
plays a role in various physiological functions (e.g. the primary
process of vision).21,23

The theoretical interpretation of spectroscopic measurements
usually involves an extensive numerical effort. The optical
response of organic molecules is traditionally represented in
terms of their global many-electron eigenstates.24,25 The
techniques used to calculate these eigenstates are usually limited
by computational time and memory to small molecules. For
example, the Configuration-Interaction/Sum-over-States (CI/
SOS) method,1,10 based on the expansion of the Stark energy
of the molecule in powers of electric field, involves the
calculations of both the ground-state and excited states wave
functions and the transition dipole moments between them. The
global eigenstates carry too much information about the system,
which makes it hard to use them efficiently in the interpretation
of optical response and in the prediction of various trends. Many
of the interesting ground-state properties may be explained by
the reduced single-electron density matrix26,27
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wherecm
+(cm) are creation (annihilation) operators of an elec-

tron at themth atomic orbital, and|g〉 is the ground-state many-
electron wave function. The diagonal elementsFjnn represent
the electronic charge density at thenth orbital. These elements
are used in various population analyses (Lo¨wdin, Milliken) to
prescribe a portion of charge to specific atoms and are
commonly visualized using contour charge density maps. The
off-diagonal elements,m * n, represent the bonding structure
(i.e., bond orders) associated with a pair of atomic orbitals and
are useful in interpreting the chemical bonding pattern along
the molecule.28-31 In the CEO approach presented here, the
microscopic electronic dynamics underlying the optical transi-
tions between the ground-state and an electronic excited state
|ν〉 is expressed using the matrixêν, with matrix elements

The optical response involves only reduced information about
the global eigenstates. This information is contained in the
matricesêν. To see this we note that the molecular dipole is a
single-electron operator which may be expanded in the form

where µmn is the transition dipole matrix element. The
frequency-dependent linear polarizabilityR(ω) then assumes the
form

whereΓ is a relaxation rate andν label global excited eigenstates
|ν〉 with energiesEν and transition frequenciesΩν ≡ Eν - Eg.
Equation 1.4 implies that the matricesêν and the corresponding
frequenciesΩν contain all necessary information for calculating
the linear optical response. Calculatingêν through eq 1.2
implies that we first need to calculate the eigenstates|ν〉 and
|g〉, and then use them to compute the matrix element. However,
we will calculate the matricesêν and frequenciesΩν directly
using the time-dependent Hartree-Fock (TDHF) approach
which allows us to avoid the tedious calculations of global
eigenstates.15,18,17 The TDHF scheme is based on calculating
the time-dependent density matrix

whereψ(t) is the many-electron wave function of the molecule
driven by the external field. The matricesêν appear as
eigenmodes of the linearized TDHF equation with frequencies

Ων. The diagonal elements ofêν (n ) m) represent the net
charge induced on thenth atomic orbital by an external field,
whereas (êν)mnn* m is the dynamical bond-order representing
the joint amplitude of finding an electron on orbitalm and a
hole on orbitaln. We shall refer toêν as electronic normal
modesince they represent collective motions of electrons and
holes. They are the electronic analogues of vibrational normal
modes used in the interpretation of infrared and Raman spectra.
By displaying the matricesêν using two-dimensional plots we
establish a direct real-space connection between the optical
response and motions of charges in the molecule upon optical
excitation. The electronic modes carry less information than
the global eigenstates but substantially more than required for
calculating molecular polarizabilities. The matrix elementsµmn
of the polarization operator are nonzero only for overlapping
orbitals, which is the case when orbitals m and n are centered
either on the same atom or on nearest neighbors in the molecular
structure. Equations 1.4 and 1.2 then imply thatR(ω) only
requires near-diagonal matrix elements ofêν. However in order
to develop a clear physical picture of the optical response it is
essential to consider all matrix elements of the modes (including
those that do not contribute directly toR(ω) sinceµmn ) 0).
Another notable advantage of the CEO approach is that, unlike
CI calculations, it is size-consistent. This implies that all
calculated properties will show the proper scaling with size in
the large molecule limit.
Our analysis shows that it is very difficult to disentangle the

effects of donor-acceptor and bridge length on the spectroscopy
of molecules with relatively short bridges. To obtain a clear
picture of the optical response of acceptor-substituted molecules
we found it instructive to study the size-dependence of optical
properties starting with very long bridges. In these systems the
effects of the acceptor and the bridge regions can be clearly
separated. Optical properties of acceptor-substituted molecules
with shorter bridges can then be attributed to quantum confine-
ment, which is important when the bridge size becomes
comparable to the coherence lengthLI. This analysis is
reminiscent of the description of exciton confinement in
semiconductor nanostructures32 where LI is given by the
Wannier exciton diameter.33-35

In section II we investigate the ground-state properties of
several acceptor-substituted carotenoids studied experimentally
in refs 36 and 11, using the ground-state density matrix
calculated from the INDO/S Hamiltonian, as described in
Appendix A. Real-space analysis of the optical response of
these molecules is carried out in section III by solving the TDHF
equations which use the ground-state density matrices as an
input. Details of the calculations are given in Appendices B-D.
Previous applications of the CEO were based on the Pariser-
Par-Pople (PPP) Hamiltonian which is parameterized to a limited
class of molecules. The combination with the INDO/S Hamil-
tonian presented here allows us to calculate the optical properties
of a broad range of molecules without tuning any empirical
parameters. Linear absorption and off-resonant quadratic and
cubic polarizabilities of these molecules are calculated, and their
scaling with size in neutral and polar molecules are investigated(26) McWeeny, R.; Sutcliffe, B. T.Methods of Molecular Quantum
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Fjmn≡ 〈g|cm+cn|g〉 (1.1)

(êν)mn) 〈ν|cm+cn|g〉 (1.2)

P) ∑
mn

µmncm
+cn (1.3)

R(ω) ) ∑
ν

∑
mnkl

µmnµkl

2Ων(êν)mn(êν)kl

Ων
2 - (ω + iΓ)2

(1.4)

Fmn(t) ≡ 〈ψ(t)|cm+cn|ψ(t)〉 ) Fjmn+ ∑
ν

aν(t)(êν)mn

+ a*ν(t)(êν
+)mn (1.5)
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using two-dimensional plots of the dominant electronic modes.
In section IV the ground-state properties of large donor-
acceptor substituted molecules are analyzed. Finally we discuss
and summarize our results in section V.

II. Size-Scaling of the Ground-State Density Matrix

The six carotenoids listed in order of increasing acceptor-
strength in Figure 1 were synthesized, and their optical electronic
spectra measured in ref 36. Betacarotene (1) is a symmetric
nonpolar molecule. In the other molecules one end was
substituted with an acceptor group.

We first calculated the Hartree-Fock ground-state density
matrices. Optimal ground-state geometries were obtained at the
AM1 level using Gaussian-94. The ZINDO code was used next
to generate the INDO/S Hamiltonian (Appendix A). This
Hamiltonian assigns a singles-type basis function to hydrogen
atoms and four basis functions (s, px, py, pz) to all other heavy
atoms of these molecules. The orbitalss, py, pz on the carbons
in the chain aresp2 hybridized and form the molecular
σ-bonding skeleton. Qualitatively, onlypx orbitals perpendicular
to the molecular plane participate in theπ-bonding network and
are responsible for the lowest optical excitations. Assuming
thatσ-electrons do not contribute to the ground-state acceptor-
bridge charge redistribution and to the optical properties, we
sorted out allK × K (K being the total basis set size) density
matrices, retaining only elements corresponding topx orbitals.
The resultingk× kmatrices (wherek < K is the number ofpx
orbitals of heavy atoms) were displayed as contour plots. The
ground-state density matrix elements have the following physical
significance: the diagonal elements (n ) m) represent the
π-electron charge at themth atom, whereas the off-diagonal (n
* m) elements reflect theπ-bond-orders betweenn andmatoms.
[This applies for the polyenic chain but not to some atoms at
the ends of molecules, where other types of hybridizations are
formed. Since our goal is to explore the dynamics of the
π-electron system in the chain, we will use this interpretation.]

We thus end up with the same interpretation of the density
matrices as used previously for the simpler PPP Hamiltonian.17,37

The effect of the acceptor on the molecular ground-state can
be interpreted by using contour plots of the density matrices.
The absolute values of the reduced single-electron ground-state
density matrix elements|Fjnm| of betacarotene (1) are shown in
Figure 2A. The axes represent carbon atoms. (The bridge
atoms are labeled 1-18 as indicated in Figure 2). The parts
corresponding to the end structures are marked by rectangles
in the corners of matrix. The chain’s density matrix is
dominated by the diagonal and near-diagonal elements, reflect-
ing the bonds between nearest neighbors. The nine bridge
double bonds and two double bonds located at the ends are
clearly identified. The ground-state density matrix of molecule
6 (with the strongest acceptor) is displayed in Figure 2B. The
decrease ofπ-electron density in the bridge (along the diagonal
of the matrix) near the acceptor is clearly seen. Other calculated
ground-state properties of all molecules are displayed in Figure
3. The growth of ground-state dipole moments (panels A) and
the total charge on the acceptor end (panels B) are commensurate
with increasing the acceptor strength.
To explore the acceptor effect we examined the size-scaling

of the optical response and its saturation to the bulk by
increasing the polyenic chain length. [During geometry opti-
mization in long molecules, the geometry of the polyenic chain
was constrained to be planar.] The molecular templates shown
in Figure 4 represent two extreme cases: neutral N(n) and polar
P(n) molecules. Some ground-state properties of P(40) are
displayed in Figure 5. We first consider the bond-length

(37) Fukutome, H.J. Mol. Struct. (Theochem)1989, 188, 337 and
references therein.

Figure 1. Six acceptor-substituted carotenoids11,36 listed in order of
increasing acceptor strength. Repeat units numbering used in two-
dimensional plots is given for molecule 1.

Figure 2. Contour plots of ground-state density matrices for (A) neutral
N(10) (compound1) and (B) polarP(10) (compound6) molecules.
The color code is shown in the upper panel. The structures at the ends
of molecules are shown by rectangles.
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alternation parameterδlj which denotes the difference between
the single (l2j) and the double (l2j-1) bond lengths in thejth
repeat unit along the bridge

(Note that the first repeat unitj ) 1 is at the acceptor end.)
Panel A shows the variation of the bond-length alternation along
the bridge. Panel C represents the variation of the total atomic
chargeqA (eq B1) along the chain, and panel B shows the
integral of this quantity

whereQAcceptor ) 0.69e is the total electronic charge on the
acceptor. These calculations illustrate the interplay of bulk and
boundary (end) effects in electronic structure of conjugated
molecules. The figures show that the acceptor attracts electronic
charge and attempts to invert the chain structure to zwitteronic.
The π-electronic system in response screens the acceptor

influence by inducing a positive charge at the acceptor end.
The electrons completely neutralize the acceptor at an effective
length of about 10 double bonds, and the other parts of the
molecule are unaffected by the acceptor. This leads to a
saturation of the ground-state dipole moment at this molecular
size.
The acceptor-strength controls the magnitude of the dipole

moment, whereas the electronic mobility determines the effec-
tive screening length. Our analysis is based on following the
charge distributionqA and bond-length alternationδln along the
chain. The bond-order alternation, which is another important
characteristic of electronic structure, is usually strongly cor-
related with the bond-length alternationδln,38 and for the sake
of brevity we have usedδln as the measure of both quantities.
In the next section we will use the ground-state density matrices
to calculate and interpret the optical spectra of these molecules.

III. Electronic Normal Modes and Optical Absorption

The experimental absorption spectra of the family of substi-
tuted carotenoids (Figure 1) are displayed in Figure 6 (dashed
lines).36 The spectrum of the unsubstituted molecule (1) is
dominated by a single peaka. As the acceptor strength is
increased, this peak is red shifted, and a second, weaker, peak
b appears. An additional impurity peaki, appearing around
4.5 eV on all experimental spectra (and absent in our calcula-
tions), originates from the antioxidant added to samples in order
to increase their shelf lifetime. Nonlinear polarizabilities of
these molecules showed a dramatic growth with increasing
acceptor strength.
The absorption spectra were calculated by solving the TDHF

equations outlined in Appendix B, using the ground-state density

(38) Tretiak, S.; Chernyak, V.; Mukamel, S.Phys. ReV. Lett. 1996, 77,
4656.

Figure 3. Dipole moments (A), total charge on the acceptor (B),
frequency of the lowest transition (C), linearR(0) (D), quadraticâ(0)
(E), and cubicγ(0) (F) off-resonant polarizabilities for six carotenoids.
The ordinate axes are labeled by compound number according to Figure
1.R, â, andγ are in the units ofeÅ2 V-1 [ 1.441× 10-23 esu], eÅ3 V-2

[4.323× 10-29 esu], andeÅ4 V-3 [1.297× 10-34 esu], respectively.

Figure 4. Structures of the neutralN(n) and polarP(n) (substituted
by the strongest acceptor) molecules. Calculations were done for chain
lengths ofn ) 10, 15, 20, 30, 40 double bonds.

δl j ) l2j - l2j-1, j ) 1, ...,n (2.1)

QA ) QAcceptor+ ∑
a)1

A

qa (2.2)

Figure 5. Variation of the bond-length alternation (A), total charge
QA (B), total atomic chargeqA (C), diagonal elements of modesa and
b in polar P(n) molecule (D and E), and modesa′ andb′ in neutral
N(n) molecule (F and G)) along the chain for chain lengthn ) 40
double bonds.
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matricesFj as an input. The electronic modesêν (Appendix C)
were calculated using the DSMA outlined in Appendix D. We
have recasted eq 1.4 in the form

wherefν ) 2ΩνTr(µêν)2 is the oscillator-strength of theg to ν
transition. The six calculated spectra shown by solid lines in
Figure 6 closely resemble the experimental spectra. The red-
shift of the band edge transition (a) with increasing acceptor
strength is completely reproduced: computed frequencies are
within 0.07 eV of experiment, except for compound4 where
the difference is 0.23 eV (see panel C in Figure 3). The second
peak (b) was reproduced in our calculations with a weaker
oscillator strength compared with experiment. This discrepancy
may be attributed to two factors: First, as will be shown later,
an acceptor perturbs the second charge-transfer mode which is
dark in the symmetric molecule and makes it visible in linear
absorption. This influence depends not only on the acceptor
strength but also onπ-electron mobility, which in turn depends
on the bond-length alternation (in nonalternating chains the
electrons move more easily). Calculations performed with
slightly different geometries (obtained from different levels of
semiempirical orab initio geometry optimizations) showed that
the relative oscillator-strengths of these peaks in molecules with
strong acceptors are much more sensitive to the bond-length
alternation than their frequencies (the second peak (b) became
comparable and even stronger than the first peak (a) for some
geometries). Therefore, even small differences between ex-
perimental and calculated structures can lead to the redistribution
of intensity of the linear absorption peaks. Second, the
experiments were carried out in films where intermolecular
interactions, which were not taken into account in the present

single-molecule calculations, may be significant. For example,
intermolecular charge transfer39 is possible between the acceptor
and the neutral end of an adjacent molecule.
The right column in Figure 3 shows the variation of the off-

resonant first, second, and third order polarizabilitiesR(0),
â(0), andγ(0) with acceptor strength. We found a steep growth
R(0) andγ(0) by factors 2.5 and 15, respectively, from neutral
to the most polar case. Experimentally the compound with the
strongest acceptor showed a 45-fold enhancement of resonant
γ compared to the neutral betacarotene.11 To explore this strong
acceptor effect on the polarizabilities we examined the size-
scaling and saturation to the bulk of the optical response in
molecules P(n) and N(n). We expect the acceptor’s influence
to decrease with increasing molecular size, and in the infinite
chain limit all molecules should have the same linear absorption
spectra with the saturated band-edge transitionΩ∞ and bulk
scaling of linear polarizabilityR ∼ n.38,40 Starting withN(40)
andP(40), we gradually decreased the chain length and followed
the evolution of the optical response up to 10 double bonds
which is the bridge length of carotenes 1 and 6. The electronic
absorption ofP(n) (solid lines) andN(n) (dashed lines) are
displays in Figure 7 forn ) 40, 30, 20, and 10 double bonds.
The figure clearly shows that the oscillator-strength of the lowest
frequency peaka of the polar molecules does not change
considerably, whereas the second peakb grows with increasing
chain length and gradually attains the bulk limit of the band
edgea′ transition of the neutral molecules.
To account for these trends we display in Figures 8 and 10

the absolute magnitudes of the electronic modesêν correspond-

(39) Yan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.;
Miller, T. M. Phys. ReV. Lett. 1994, 72, 1104. Yan, M.; Rothberg, L. J.;
Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. C.Phys. ReV. Lett.1994,
73, 744. Yan, M.; Rothberg, L. J.; Kwock, E. W.; Miller, T. M.Phys. ReV.
Lett. 1995, 75, 1992.

(40) Mukamel, S.; Wang, H. X.Phys. ReV. Lett.1992, 69, 65.

Figure 6. Calculated (solid lines) and experimental (dashed lines) linear
absorption spectra36 of six carotenoids. Panels are numbered according
to Figure 1. The absolute values of linear polarizability are given in
arbitrary units. Theoretical spectra were calculated with linewidthΓ )
0.2 eV. Peaki at 4.5 eV appearing on all experimental spectra originates
from the antioxidant added to samples.

R(ω) ) ∑
ν

fν

Ων
2 - (ω + iΓ)2

(3.1)

Figure 7. Linear absorption spectra calculated with line widthΓ )
0.2 eV of the neutralN(n) (dashed lines) and polarP(n) (solid lines)
molecules shown in Figure 4. The relative values of linear polarizability
are given in arbitrary units.
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ing to both peaks using the same format of the ground-state
calculations (Figure 2). These two-dimensional plots allow us
to gain a clear physical insight into the nature of optical
excitations. By displaying the matrices representing the modes
in the site representation we relate the optical properties directly
to motions of charges in the system. Optical excitations create
electron-hole pairs. The ordinate and abscissa label electron
and hole, respectively. The diagonal elementsênn reflect
induced charges on various atoms, whereas the off-diagonal
elementsêmnshow the probability amplitude of finding an excess
electron at themth atomic orbital and a hole on thenth atomic
orbital.
The electronic modes of the two strongest transitionsêa′ and

êb′ appearing in the spectra of neutral molecules N(40) (panels
A and B), N(20) (panels C and D), and N(10) (panels E and F)
are displayed in Figure 8. The electronic modes of the neutral
molecule are almost symmetric with respect to the diagonal (êmn
≈ ênm). This means that there is no preferable direction of
motion for electron (or holes). The size of the mode along the
“antidiagonal” (m - n) direction reflects the delocalization of
the relative motion of the electron-hole pair (exciton coherence
size), whereas the variation along the diagonal reflects their
center of mass motion (i.e., where the optical excitation resides
within the molecule). We shall denote these the off-diagonal
and diagonal sizes, respectively.
A more detailed view of the charge-density-wave, i.e., the

variation of the diagonal elements for modesêa′ andêb′ is given
in panels F and G of Figure 5. (This is complementary
information to Figure 8 which only gives the absolute magni-

tudes of the density matrix elements and does not show their
sign.) Optical excitations of a neutral molecule are localized
on the polyenic chain, with no significant change in mode
structures as the chain-length is increased.êa′ is abulk mode
with an off-diagonal coherence size (i.e., size, where the
amplitudes of coherences decrease to 10% of their maximum
values) of about 12 double bonds. The dipole momentµa′ )
Tr(µêa′) of this mode is uniformly distributed along the chain
(see Figure 9). We previously observed such bulk features in
the band-edge transition of polyacetylene oligomers.17 The
second oscillatorêb′ is very different: It has the same off-
diagonal coherence size, but a nonuniform diagonal space
distribution. Three contributions to the dipole moment are
clearly identified: µb′ ) Tr(µêb′) ) µI + µII + µIII . The
distribution of the dipole moment for these three regions is
schematically shown in Figure 9. The strongest electronic
coherences are created at the end regions of the molecule
(I andIII ) with diagonal size of about 17 double bonds. Weaker
bridge coherences are created in the middle of the chain (II ).
The total contribution from the ends is approximately zero, and
only the region II contributes to the oscillator strength of this
mode. This mode therefore makes only a weak contribution to
the linear absorption. However, suchcharge transfermodes
have the potential to dominate spectra of nonsymmetric
structures.
The electronic modesêa and êb of the two oscillators

contributing to the linear spectra of the polar molecules P(40),
P(20), and P(10) are displayed in Figure 10. The diagonal
elements of modesêa andêb in P(40) are shown in panels D
and C of Figure 5. Figure 10A shows that the lowest peak (a)
in P(40) represents a charge-transfer mode, completely localized
at the acceptor end with the same off-diagonal and diagonal
sizes (12 and 17 double bonds, respectively) as for the neutral
molecule. The principal difference is the appearance of strong
electronic coherences at the acceptor end. The coherences are
more pronounced in the electron (ordinate) direction. This
implies that the created electron-hole pair involves electron
transfer from the acceptor to the chain. The hole resides
primarily on the acceptor, whereas the electron can move also
in region I of the bridge. This tends to reduce the chain-to-the
acceptor electron transfer which takes place in the ground-state.
The dipole moment of the mode is large and localized (see
Figure 9). This mode therefore carries a strong oscillator
strength in the optical response of small chains and saturates
(become constant) in larger molecules (n > 17 double bonds).
The second bulk mode (b) (Figure 2B) differs only by the part
controlled by acceptor from the bulk mode of neutral molecule
(compared to Figure 8A). The oscillator-strength of this mode
for molecules withn > 12 double bonds grows linearly. The
absorption spectra of small chains are therefore controlled by
the charge-transfer mode (a), whereas the bulk mode (b)

Figure 8. Contour plots of density matrices for neutralN(n) molecule.
Top panel: coordinates of the firsta′ (A) and secondb′ (B) absorption
peaks for chain lengthn) 40 double bonds. Middle and bottom panels
display the same quantities but for chain lengths ofn) 20 andn) 10
double bonds, respectively. The structures at the ends of molecules
are shown by rectangles.

Figure 9. Sketch of the dipole momentsµ ) Tr(µQ) gain for dominant
modes in neutralN(n) and polarP(n) molecules with chain lengthn )
40 double bonds.
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becomes dominant with increasing molecular size. The different
character of these modes is lost for chains shorter than effective
coherence size of 12 double bonds such as P(10) displayed in
Figure 10E,F. Quantum confinement34 then dramatically affects
the modes, and we can no longer classify them as either end or
bridge type. This is clearly evident by starting with large chains
and gradually reducing the size.

IV. The Ground-State of Large Molecules: Solitons

Our study allows us to draw some general conclusions with
regard to the ground state of large molecules. Panels A-C of
Figure 11 display schematically the bond-length alternation
pattern of several molecules with increasing acceptor strength.
The ground state of an infinitely long molecule is represented
by a bond-order wave which givesqA ) 0, δln ) (δlh. This
means that the ground state is doubly degenerate with either
δln ) +δlh (double-single alternation) orδln ) -δlh (single-
double alternation). In finite molecules, the ground-state
degeneracy may be broken even if the molecules are very long.
In neutral polyensqA ) 0 at the ends as well as in the bulk,
which implies the formation of double bonds at the ends, giving
δlI > 0 andδlIII > 0. Our calculations show thatδlI ) δlIII ≈
δlII. The bond alternation in the bulk can assume two values,
δlII ) (δlh. However ifδlII ) -δlh, two solitons are needed to
transform the boundary valuesδlI ) δlIII ≈ δlh to the bulk values
δlII ) -δlh (see Figure 11A) which means that the energy of
the δlII ) -δlh configuration is higher than that of theδlII )
-δlh configuration (Figure 11A) by the energy needed to form
two solitons. The ground-state is no longer degenerate and is

represented by a homogeneous solutionδlII ) -δlh. This
illustrates that the nondegeneracy of the ground-state of linear
conjugated molecules may be attributed to boundary effects.
By adding an acceptor to one end of a long molecule, we

still haveqIII ) 0, δlIII ≈ δlh; however, the charge density at the
acceptor end isqI * 0. This leads to a decrease in the double
chemical bond strength at that end, which implies thatδlI <
δlh. If the acceptor is not very strong, a soliton is needed to
transformδl ) δlI to its bulk value,δl ) δlII ) δlh, and no
soliton is needed at the other end (solid curve in Figure 11B).
This is confirmed by our calculations (see Figure 5A). The
soliton is located at the acceptor end of the molecule to minimize
the length of the region whereδl is different from its bulk value.
The soliton size represents the length of the region where the
boundary value ofδlI transforms to its bulk value. Charge
screening occurs in the same region, as is clearly shown in
Figure 5B,C. A configuration withδlII ) -δlh (dashed lines in
Figure 11B) involves the formation of solitons on both ends
and has a higher energy. The strong acceptor case is displayed
in Figure 11C. In this case we haveδlI ) -δlh, and the acceptor
attracts an additional electron and the molecule is separated into
two parts: the edge carbon atom (with charge-e) and a
polyacetylene anion which contains an odd (N - 1) number of
carbon atoms and charge+e. The ground state of an anion
(known as a charge soliton)41,42is needed to change the sign of

Figure 10. Contour plots of density matrices for polarP(n) molecule.
Top panels: coordinates of the firsta (A) and secondb (B) absorption
peaks for chain lengthn) 40 double bonds. Middle and bottom panels
display the same quantities but for chain lengthn ) 20 andn ) 10
double bonds, respectively. The structures at the ends of molecules
are shown by rectangles.

Figure 11. Schematic variation of bond-length alternation pattern in
the long acceptor substituted molecules with increasing acceptor strength
(panels A-C). Two possible configurations corresponding to ground-
states withδlII ) δlh andδlII ) -δlh are shown by solid and dashed
lines, respectively. Panel A. No acceptor, the ground state is nonde-
generate and hasδlII ) δlh (solid line); the state withδlII ) -δlh (dashed
line) has a higher energy needed to form two solitons. Panel B
intermediate-strength acceptor: the ground state withδlII ) δlh is
nondegenerate (solid line) and contains a soliton in the acceptor region.
A state withδlII ) -δlh (dashed line) contains two solitons and has a
higher energy. Panel C. Very strong acceptor: The molecule is separated
into the acceptor with the charge-e and anion with the charge+e
and (N-1) carbon atoms with the ground-state representing the charged
soliton. The ground state of an anion may become degenerate since a
soliton can be formed anywhere (this is represented by the dashed line).
However Coulomb interaction between the acceptor and the soliton
leads to its localization near the acceptor (solid line). Panel D: Molecule
substituted by a donor and an acceptor of intermediate strength. Two
ground-states withδlII ) δlh (solid line) andδlII ) -δlh (dashed line)
have the same energy (cyanine-like).
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the bond-length alternationδl ) (δlh on the ends of the
molecule. The charge+e is concentrated in the region where
δl undergoes the change from-δlh to +δlh. The center of this
region,x0, and size of the region,∆x, are usually referred to as
the soliton position and size, respectively. The ground state is
highly degenerate since the soliton can be found anywhere along
the molecule (a typical situation is represented by the dashed
line in Figure 11C). This leads to the formation of a soliton
band in the ground-state. The ground state closely resembles
the charged solitons observed in the ground state of anions of
degenerate polymers molecules with odd numbers of carbon
atoms.41 However the Coulomb interaction between the charged
acceptor and the soliton may lead to localization of the soliton
in the vicinity of the edge (solid line in Figure 11D). Decreasing
the acceptor strength leads to a reduction of the absolute value,
q, of charge accepted by the edge atom (qA < e) and to the
appearance of bonding between the acceptor and the anion,
which leads to-δlh < δlI < δlh. This situation, which has been
considered above, can be qualitatively represented as follows:
a charged soliton is located atx0 < ∆x/2 and is cut atx ) 0
(the acceptor position) since there are no carbon atoms atx <
0. If δl(x - x0) is the soliton profile thenδlI ) δl(x - x0) and
qA < e is the charge in the soliton in the region-x0 < x < ∞.
Note thatx0 can assume negative values as well. The weaker
the acceptor, the smaller isx0: decreasingx0 leads to the
decrease ofqA and increase ofδlI. In the case of a very weak
acceptor,x0 f -∞ (i.e., qA f 0, δlI - δlh). An intermediate
case represented in Figure 11D corresponds tox0 ) 0.
If we add an acceptor to one end (I) and a donor to the other

end (III), the ground-state degeneracy should occur at some
intermediate donor and acceptor strength corresponding toδlI
≈ δlIII ≈ 0. Two configurations corresponding to ground states
with δlII ) (δlh are shown in Figure 11D. However in short
molecules (L < ∆x) the ground state will then be nonalternating
with δl ) 0. This is known as the cyanine limit.43

V. Discussion

The optical response of long acceptor-substituted molecules
can be interpreted by dividing them into three effective
regions: the acceptor (I) and the neutral (III ) boundary transition
regions at the molecular ends, connected by the bridge (middle)
region (II ). (In donor-acceptor substituted molecules, which
were not considered here, regionIII will represent the donor
end.) There is no charge transfer between these regions, which
means that the optical properties are additive and can be
interpreted in the same way as those of molecular aggregates.44

Region II has the same properties as the neutral molecule; it
has only odd order responses which scale linearly with size,
whereas regionsI and III have a fixed size. The ground and
the excited states are zwitteronic. These effective regions are
responsible for even-order optical responses which naturally do
not depend on the size of the underlying molecule. They
contribute to odd-order response as well, but for long chains
these responses are dominated by the regionII contribution
which is proportional to the size. For long chains the influence
of the acceptor has a finite range which leads to the creation of
several coherence sizes. The first coherence length,LI, is related

to the size on which the acceptor charge is screened; our
calculations show that the bond-length alternation,δl, is different
from its bulk value in the same region, hereafter referred to as
the transition region. The acceptor may affect the excited states
by either modifying an existing delocalized state in the transition
region or creating new localized states at that region. Both
mechanisms affect optical properties, and in particular they lead
to a nonzero second-order polarizabilityâ. We expect that the
energy of a delocalized state should not be affected by the
acceptor, whereas the energy of a localized state should strongly
depend on the acceptor strength. This implies that localized
and delocalized states may be readily distinguished by resonant
three-wave mixing spectroscopies.
Optical properties of short molecules can be interpreted in

terms of quantum confinement when the molecular size becomes
comparable with the sizesLI andLIII of the I and III regions.
These constitute additional coherence diagonal sizes, as opposed
to the coherence off-diagonal size of the neutral molecule,LII,
represented by the width of its bulk mode (see Figure 2F). In
this case the electronic eigenstates of regionsI, II , andIII are
mixed (see Figure 8C,D), and for smaller sizes the separation
into effective subunits is no longer possible since charge transfer
takes place across the entire molecule (see Figure 8A,B). The
local excitation created by the acceptor drastically increases the
polarizabilities of polyenic molecules. Theπ-electronic system
screens the acceptor influence: the acceptor strength controls
the magnitude of the dipole moment, whereas the electronic
mobility determines the effective screening length.
The present approach should be particularly suitable for

incorporating nuclear motions45 by including additional nuclear
oscillators. The time dependent density matrix will then allow
us to follow the bond rearrangement in real time, coherent
vibrations, solvent modes, and isomerization. These effects may
be probed using femtosecond techniques.23,46,51,52 Recent optical
studies of dendrimers have raised interesting questions with
regard to the localization of optical excitations.47 The present
approach should allow us to address this issue properly in a
direct and unambiguous way.
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Appendix A: The Intermediate Neglect of Differential
Overlap/Spectroscopy (INDO/S) Hamiltonian

We consider a general system ofN electrons which can
occupyK possible molecular states (N e K) and interact with
an external field. The eigenstates of the molecular electronic
Hamiltonian
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are approximated as a single Slater determinantψ ) |φ1(1)φ2-
(2) ...φN(N)〉, where{φi} are the molecular orbitals. Following
Roothaan’s procedure28 they are expanded as a linear combina-
tion of known spatial atomic basis functions{øR}

The electronic Hamiltonian assumes the form28

where subscriptsi, j, k, l run over atomic basic functions and
σ, σ′ label spin components.cn

+(cn) are the creation (annihila-
tion) operators which satisfy the Fermi anticommutation rela-
tions in the orthogonal basis set

and all other anticommutators ofc+ and c vanish. Hereafter
we will focus on the closed-shell case and exclude spin
variables.28 Generalization to the unrestricted opened-shell case
is straightforward.
The first term in eq A3 is the core-Hamiltonian describing

the kinetic energy and nuclear attraction of an electron

whereRA is the nuclear coordinate of atomA. The second term
represents electron-electron Coulomb interactions where

are the two-electron integrals. The interaction between the
electrons and the external electric fieldE(t) polarized along the
chosenz-axis is given by the last term in eq A3,µ being the
dipole operator

The SCF procedure used to solve the Schro¨dinger eq A1 for
the Hartree-Fock ground-state28 is based on the iterative
solution of the matrix equation

This equation may be recast in the form

where the ground-state density matrix is related to the molecular
orbital expansion coefficients (eq A2) as

F(Fj) is the Fock matrix

and the matrix representation of the Coulomb electronic operator
V in the atomic basis set{øR} is

The INDO approximation49 limits the basis set to valence
orbitals of Slater type. These atomic orbitals are assumed to
be orthogonal

and the exchange terms in the two-electron interaction are
permitted only among orbitals located on the same atom

where øn
A belongs to atom A andøn

B to atom B. The four-
dimensional matrix〈ønøk|ømøl〉 thus becomes block-diagonal in
two dimensions. The parameters of the INDO/S Hamiltonian
are given in refs 49, 50, and 53.

Appendix B: The Single-Electron Density Matrix and the
TDHF Equations

The TDHF approach provides a convenient approximation
scheme for calculating the optical response of large molecules.
The reduced single-electron density matrix eq 1.1 representing
the molecule driven by an external field is given byF(t) ) Fj +
δF(t) where the ground-state density matrixFj is the key input
to this calculations. The diagonal element ofFnm (n ) m)
represents the charge at themth atomic orbital, and

is the net charge on the atomA. The off-diagonal elements (n
* m) represent the electronic coherences between atomic
orbitals. In particular,FjnAmB describes the chemical bonding
strength (bond-order) between atomsA and B. The matrix
elements ofδFnm(t) represent the changes in these quantities
induced by the electric field.
We start with the Heisenberg equation of motion forcn

+cm.
This equation is not closed since higher order products will show
up in the right hand side. Writing equations of motion for these
higher products will yield increasingly higher products. This
is the famous hierarchy of many-body dynamics that is common
to classical and quantummechanics. To overcome this difficulty
we need a truncation procedure. The simplest assumes that the
many-body wave function is given by a single Slater determinant
at all times. This yields the time dependent Hartree-Fock
factorization15,18,48

To derive equations of motion we first decomposeδF(t) into
two components

(48) Hartmann, M.; Chernyak, V.; Mukamel, S.Phys. ReV. B 1995, 52,
2528.

F(Fj) ) t + V(Fj) (A11)

V(Fj)mn) ∑
k,l

K

Fjkl[〈mk|nl〉 -
1

2
〈mn|kl〉] (A12)

〈n|m〉 )∫dr1ø*n(1)øm(1)) δnm (A13)

〈øn
Aøk

B|ømAøl
B〉 ) {〈øn

Aøk
A|ømAøl

A〉 A) B

〈øn
Aøk

B|ønAøkB〉δnmδkl A* B
(A14)

qA ) ∑
n∈A

Fjnn - ZA (B1)

〈cn
+cm

+cn′cm′〉(t) ) 〈cn
+cn′〉〈cm

+cm′〉(t) + 〈cn
+cm′〉〈cm

+cn′〉(t) (B2)

δF(t) ) ê(t) + T(ê(t)) (B3)

Ĥψ ) Eψ (A1)

φi ) ∑
R

K

CiRøR (A2)

Ĥ ) ∑
mnσ

tmncmσ
+ cnσ +

∑
mnkl
σσ′

〈nm|kl〉cmσ
+ cnσ′

+ ckσ′clσ - E(t) ∑
mnσ

µmncmσ
+ cnσ (A3)

cmσcnσ′
+ + cnσ′

+ cmσ ) δmnδσσ′ (A4)

tnm) 〈n| - 1

2
∇12 - ∑

A

ZA

|r1 - RA||m〉 ≡
∫dr1ø*n(1)(∇12 - ∑

A

ZA

|r1 - RA|)øm(1) (A5)

〈nm|kl〉 )∫dr1dr2ø*n(1)ø*m(2) 1r12øk(1)øl(2) (A6)

µnm) 〈n|µz|m〉 ≡ ∫dr1ø*n(1)z1øm(1) (A7)

FC) εC (A8)

[F(Fj), Fj] ) 0 (A9)

Fjnm) 2∑
a

N/2

CnaC*ma (A10)
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where ê represents the particle-hole (interband) andT(ê)
represents the particle-particle and the hole-hole (intraband)
parts. The dimensionality of density matrixF defined by the
basis set size isK × K. We assumeN occupied andK - N
unoccupied orbitals. The dimensionality of interband and
intraband parts are 2N (K - N) andN2 + (K - N)2, respectively.
The projection property of the reduced single-electron density
matrix F(t)2 ) F(t) makes it possible to expressT(ê) in terms
of ê

whereI is the unitK × K matrix.
Applying the TDHF anzatz eq B2 we obtain the following

closed equations of motion forê.

whereL is a linear operator in Liouville space (i.e., super-
operator)15,18,17given by

and

is the nonlinear part of the equation projected onto the particle-
hole subspace (eq C2). The Fock operatorF and the Coulomb
operatorV are defined by eqs A11 and A12.
The time-dependent polarization which determines all optical

properties is finally given by

Equations B5 and B4 constitute the basic TDHF equations.18

They may be solved by expanding the density matrix in powers
of the external field

The original nonlinear eq B5 is then transformed into a hierarchy
of linear inhomogeneous equations. Tojth order we have

whereη(j)(t) is given in terms ofFj and lower orderê(k) k < j,
η(1)(t) ) -E(t)[µ, Fb], etc.
The linear and nonlinear optical response is calculated by

solving eq B10 either in the frequency domain or in the time
domain. In the frequency domain, the procedure involves
diagonalizing the linearized Liouville operatorL which requires
a large memory (∼N4 whereN is the total number of orbitals
in the system). Time-domain calculations do not require a large
memory (∼N2) and may be applied for larger systems. However
evaluating commutators in eqs B6 and B7 is time consuming.
These difficulties limit the application of the TDHF to basis
set size of about 100 functions.

Appendix C: The Electronic Normal Modes

In this Appendix we review a few properties of the tetradic
linear M0 ) N(K - N) dimensional space defined by the

Liouville operatorL and constrained by the projection property
of the reduced single-electron density matrixF(t).15,17,18
The scalar product of any two interbandK × K matricesA

andB which are the elements of this space is given by18,17

Note that〈A|B〉 ) -〈B|A〉. This scalar product thus behaves
more as a classical Poisson bracket rather than a quantum
mechanical scalar product. The projection property ofFj allows
us to project any matrixA into the particle-hole subspace

The eigenmodesêν and eigenfrequenciesΩν of L satisfy the
equation

The eigenmodes come in conjugate pairs: Each vectorêν with
frequencyΩν has a counterpartê-ν ) êν

+ with frequency-Ων.
Since L is real, the electronic modes can be taken to be real as
well. A classical mode picture of the optical response is
obtained by constructing the electronic oscillators defined by
the coordinate-momentum variables

P andQ satisfy the relation

We shall adopt the following normalization of the electronic
modes:18

The electronic oscillator is a pair of conjugated electronic modes
(K × K matricesêν andêν

+ or Pν andQν) with the frequency
Ων. Any interbandK × K matrix A can be expanded in the
basis set of electronic oscillators as

Appendix D: The Density-Matrix-Spectral-Moment
Algorithm (DSMA)

The Density-Matrix-Spectral-Moments Algorithm (DS-
MA)17 is an approximate scheme for solving the TDHF
equations which allows us to calculateê(j) from the source (η(j))
by solving eq B10 without a direct diagonalization ofL. This
is accomplished by computing the set of electronic oscillators
which dominate the expansion ofη(j). We can takeη(j)(t) to be
real and express it in terms of our momentum variables as17

whereη(j) can be viewed either in the frequency or in the time

T(ê) ) (Fj - I
2)(I - xI - 4ê2) (B4)

i
∂ê
∂t

- Lê ) R(ê)p-h - E(t)[µ,Fj] (B5)

Lê ) [F(Fj),ê] + [V(ê),Fj] (B6)

R(ê) ) [F(ê),ê + T(ê)] + [F(T(ê)), Fj + ê]
- E[µ,ê + T(ê)] (B7)

P(t) ) Tr(µê(t)) + Tr(µT(ê(t))) (B8)

ê ) ê(1) + ê(2) + ... T(ê) ) T(2)(ê) + T(3)(ê) + ...
(B9)

i
∂ê(j)(t)
∂t

- Lê(j)(t) ) η(j)(t) (B10)

〈A|B〉 ≡ Tr(Fj[A,B]) (C1)

Ap-h ) [[A, Fj], Fj] (C2)

Lêν ) Ωνêν Lêν
+ ) -Ωνêν

+ ν ) 1, ...,M0 (C3)

Qν )
êν + êν

+

x2
Pν ) -i

êν - êν
+

x2
(C4)

LQν ) ΩνiPν LiPν ) ΩνQν ν ) 1, ...,M0 (C5)

〈êR
+|êâ〉 ) δRâ 〈êR

+|êâ
+〉 ) 0 (C6)

〈PR|Qâ〉 ) iδRâ 〈PR|Pâ〉 ) 〈QR|Qâ〉 ) 0 (C7)

A) ∑
ν)1

M0

〈êν
+|A〉êν - 〈êν|A〉êν

+ ) ∑
ν)1

M0

〈Qν|A〉iPν - 〈iPν|A〉Qν

(C8)

η(j) ) ∑
ν)1

M0

〈êν
+|η(j)〉êν - 〈êν|η(j)〉êν

+ ) ∑
ν)1

M0

〈Qν|η(j)〉iPν )

∑
ν)1

M0

µν
(j)iPν (D1)

Absorption Spectra of Substituted Carotenoids J. Am. Chem. Soc., Vol. 119, No. 47, 199711417



domain, andµν
(j) ) x2〈êν|η(j)〉 ) 〈Qν|η(j)〉 are the real fre-

quency (or time) dependent expansion coefficients. These
electronic oscillators provide a convenient procedure for solving
eq B10.18 The formal solutions of eq B10 in the time and
frequency domain are

Substituting to these equations the expansion (D1) forη(j) and
utilizing the eignevector properties of the modes

we obtain the solution of eq B10 in terms of eigenmodesêν

andêν
+ (or Pν andQν). For example, thejth order interband

component of the reduced single-electron density matrix in
frequency domain is given by

Since only few electronic oscillators contribute significantly
to the source in the expansion (D1), the summation can be
truncated at some effective number of oscillatorsM , M0

without sacrificing accuracy.
The family of the density-matrix spectral moments is defined

asSn ≡ Lnη. These moments are used to construct the main
DSMA equations17

whereS0
(j) ) η(j) andSn

(j) ) LnS0
(j), n ) 1, 2, ....

The scalar productsKn
(j) ≡ 〈Sn

(j)|Sn+1
(j) 〉, n ) 1, 2, ..., 2M,

provide a set of equations for the frequenciesΩν and oscillator
strengthfν

(j) ) (µν
(j))2Ων:

The set of DSMA eqs D5-D7 is now complete. We start our
calculations by computing the momentsSn

(j) and Kn
(j) acting

Liouville operatorL (B6) on the sourceη(j) and using definition
of the scalar product (C1). We then solve eq D7 for the
frequenciesΩν and oscillator strengthsfν

(j). These equations
are nonlinear but have a simple analytical solution (Appendix
B in ref 17). Once we haveΩν andµν

(j), we solve (D5) and
(D6) for the modesPν andQν. The most time consuming part
of the DSMA is the calculation of commutators. Typically only
a small number of modes is required, and the DSMA greatly
reduces the numerical effort involving in solving the complete
TDHF equations.
Because of truncation atM oscillators, the resulting electronic

modes do not coincide with the TDHF modes. Equations C5
hold approximately, but the normalization relations (C7) are
satisfied exactly. These effective electronic oscillators give the

best approximation for the spectrum with a given number of
features (M). A notable advantage of the DSMA is that we
immediately obtain a global overview of the entire spectrum.
However we cannot increase the number of effective oscillators
M at will to improve the accuracy. High moments scale
exponentially (Kn ∼ Ω2n) and are dominated by high frequen-
cies. Therefore increasing the number of oscillators does not
refine the low and middle frequency range. In practiceM is
limited toe10-14. Previous applications of the DSMA using
the PPP Hamiltonian which only describes theπ-electron system
allowed to calculate accurately spectra of polyens dominating
by a few lines. The INDO/S Hamiltonian includes also the
valence electrons; therefore, the source not only is limited to
π-π* molecular excitations but also depends on a manifold of
high-frequency atomic transitions. For molecules with a
complicated electronic structure the DSMA does not reproduce
delicate spectral features such as excitations with a small
oscillator strength. To improve the accuracy we have to apply
the DSMA iteratively.
The DSMA automatically generates orthonormal effective

oscillators (eqs C7 which satisfy the eigenvalue eq C5 in an
optimal way. Therefore, each of the effective DSMA modes
is a superposition of the exact TDHF modes with close
frequencies. Thus the entire spectrum is divided into several
regions. Each effective oscillator is responsible for part of the
spectrum, and it is dominated by fewer exact oscillators than
the initial source. This property allows the use of any effective
modePν as a new fictitious source termη ) iPν in the DSMA.
The resulting oscillators are much closer to the exact ones. This
procedure (i.e., using one of the new oscillators as a new
fictitious source for the next DSMA level) can be repeated
several times until some convergence criteria are satisfied. In
practice this fictitious source is dominated by a single oscillator
(P1,Q1) which converges to the exact one. To recover the next
mode, the same iterative procedure can be applied with one
principal difference:49-53 all input sources must be made
orthogonal to the lower modes. Thus by using

we exclude all the recovered modes from the source in the
following calculations. We can continue this iterative process
utilizing this orthogonalization procedure to refine several
electronic modes. This yields an expansion of the original
source and allows us to focus on desirable fine features of the
spectrum at high resolution.
In principle, the frequency(time)-dependent polarizabilities

can be calculated by applying the DSMA to the frequency(time)-
dependent source [eq B5]. This is difficult because hundreds
of DSMA runs are needed to scan accurately all frequency-
(time) regions. In practice we calculate the off-resonant
response first. The expressions for the different orders of static
sourcesη(j) ) η(j)(ω ) 0) and intraband components of density
matricesT(j) ) T(j)(ω ) 0) are given by eqs 25 and 26 in ref
17, or they may be derived by expanding eqs B7 and B4 in
powers ofê. We run the iterative DSMA for each order of the
optical response. Calculations give us the sets of electronic

(49) Pople, J. A.; Segal, G. A.J. Chem. Phys.1965, 43, S136. Pople, J.
A.; Beveridge, D. L.; Dobosh, P.J. Chem. Phys.1967, 47, 2026.

(50) Ridley, J.; Zerner, M. C.Theor. Chim. Acta1973, 32, 111.
(51) van Beek, J. B.; Kajzar, F.; Albrecht, A. C.J. Chem. Phys.1991,

95, 6400. van Beekn, J. B.; Albrecht, A. C.Chem. Phys. Lett.1991, 187,
269.

(52) Soos, Z. G.; Mukhopanhyay, D.J. Chem. Phys.1994, 101, 5515.
(53) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff,

U. T. J. Am. Chem. Soc.1980, 102, 589.
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oscillators (Ων, Pν, Qν) which dominate thejth order of
responses (j ) 1, 2, ...). The statically induced density matrix
is given by

and

The optical polarizabilities are readily obtained using eq B8

whereø(1) ) R(0), ø(2) ) â(0), ø(3) ) γ(0), etc. The resulting
electronic oscillators need to be used to construct frequency-
(time)-dependent optical response. Frequency-dependent re-
sponse functions with up to the third order response are
expressed through the electronic modes in ref 18 [eqs 5.6 and
E3]. For example, oscillators dominating the first, second, and
third orders off-resonant responses contributes to the three-,

two-, and one-photon resonances in the resonant third order
polarizabilityγ(-ω; ω1, ω2, ω3).
In summary, the DSMA calculates the optical response by

solving the TDHF equations for motion of the single-electron
density matrix. The algorithm consists of several levels of
increasing complexity. First we recover the entire optical
response with low resolution at extremely low computational
cost. All strong transitions are fully recovered, but the fine
structure of spectrum is missing. The iterative DSMA provides
more detailed information. We implemented the simplest
version of this procedure to calculate the optical response of
organic molecules. The band edge transition oscillator was
calculated first. The remaining electronic oscillators were
recovered sequentially with increasing frequency and were used
to compute optical polarizabilities. [A more general (and
complex) procedure is to focus on a limited frequency region
and pick up physically important modes by analyzing all the
effective oscillators obtained at each iteration. The remaining
modes are included in the dominant modes, and only a few
modes are necessary. In such a case we investigate the detailed
structure of the chosen spectral region, but the algorithms for
sorting out the effective electronic oscillators need to be
developed for each particular case.] This approach allows us
to recover accurately the experimentally relevant low-frequency
spectral region (up to∼8 eV).
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